Hebron Ninth Grade Campus Pre-AP Algebra 1 Summer Packet

To receive credit all work must be shown. Try not to use calculator. Any work done on additional paper must be turned in with the assignment.

A. Order of Operations

PEMDAS = Parentheses, Exponents, Multiplication/Division, Add/Subtract from left to right.

Simplify each expression using appropriate Order of Operations.

1. $1 \bullet 5 - 6 \div 2 + 3^2$ 3. $4 + 2(10 - 4 \bullet 6)$ 5. $12(20 - 17) - 3 \bullet 6$

2.
$$125 \div [5(2+3)]$$

4. $3(2+7)^2 \div 5$
6. $3^2 \div 3 + 2^2 \bullet 7 - 20 \div 5$

The fraction bar represents division: $1 \div 4 = \frac{1}{4} = 0.25$ $\frac{1}{2} = 1 \div 2 = 0.5$ Fractions should always be written in simplest form: $\frac{3}{30} = \frac{3 \cdot 1}{3 \cdot 10} = \frac{1}{10}$ $\frac{5}{20} = \frac{1\cdot 5}{4\cdot 5} = \frac{1}{4}$ Any integer can be written as fraction with a denominator of 1: $5 = \frac{5}{1}$ $-8 = -\frac{8}{1}$ $-32 = -\frac{32}{1}$ An improper fraction can be written as a mixed number (but improper fractions are more useful so don't convert): $\frac{17}{5} = \frac{15+2}{5} = \frac{15}{5} + \frac{2}{5} = 3 + \frac{2}{5} = 3\frac{2}{5} \qquad \qquad \frac{25}{3} = \frac{24+1}{3} = 8\frac{1}{3}$ There are several equivalent ways to write a negative fraction: $-\frac{3}{5} = \frac{-3}{5} = \frac{3}{-5}$ $-\frac{7}{13} = \frac{-7}{13} = \frac{7}{-13}$ $\frac{-3}{-5} = \frac{3}{5}$ To add or subtract fractions, you must have a common denominator: $\frac{1}{5} + \frac{2}{15} = \frac{3}{15} + \frac{2}{15} = \frac{5}{15} = \frac{1}{3}$ $\frac{3}{10} + \frac{1}{6} = \frac{9}{30} + \frac{5}{30} = \frac{14}{30} = \frac{7}{15}$ To multiply fractions, multiply the numerators and the denominators: $\frac{1}{3} \cdot \frac{2}{15} = \frac{2}{45} \qquad \qquad \frac{3}{7} \cdot \frac{4}{9} = \frac{12}{63} = \frac{4}{21}$ To divide fractions, multiply by the reciprocal: $\frac{2}{7} \div \frac{10}{21} = \frac{2}{7} \cdot \frac{21}{10} = \frac{1}{1} \cdot \frac{3}{5} = \frac{3}{5} \qquad \qquad \frac{6}{5} \div \frac{9}{8} = \frac{6}{5} \cdot \frac{8}{9} = \frac{48}{45} = \frac{16}{15}$

Evaluate the following expressions and record each answer as a fraction in simplest form:

1.
$$\frac{1}{6} + \frac{5}{18} =$$
 4. $\frac{3}{7} \div \frac{5}{8} =$

2.
$$\frac{1}{5} - \frac{2}{15} =$$
 5. $\frac{-4}{3} \div \frac{3}{5} =$

3.
$$\frac{7}{10} + \frac{5}{8}$$
 6. $\frac{14}{26} - \frac{6}{13} =$

7.
$$\frac{9}{2} \cdot \frac{-4}{3} =$$
 9. $4\frac{1}{5} \div \frac{3}{5} =$

8.
$$\frac{3}{-4} \cdot \frac{-2}{9} = 10. \left(4\frac{1}{5}\right) \left(\frac{3}{5}\right) =$$

C. Coordinate Plane

Label : the origin, the 4 quadrants, the x-axis, and the y-axis Plot and label the ordered pairs:

iu iudei me ordei	•			1
A: (3,-4)	B: (-2,1)	C: (6.5, 0)	D: (2,9 ¹ / ₂)
E: (0, 3)	F: (-4, - ⁹ / ₂)) G: ([8, -2)	H: (- ¹⁶ / ₂ , 2)

		D.	Integer Opera	ation	s
1.	-23 + 17 =				$\frac{-15}{-3}$
2.	15 - (-6) =			7.	-3
3.	-5 - 8 =			8.	-24 + 30 + -9 =
4.	12 * -3 =				
5.	-4 * -7 =			9.	15 + 12 - 8 + 5 =
6.	$\frac{18}{-6}$				

E. Combining Like	Terms
-------------------	-------

Like terms: terms that have the same variables with the same exponents				
CLT: add the coefficients of the like terms.				
$2x + 5x = 7x \qquad 3x_2 - 7x + 8x_2 + 8 = 11x_2 - 7x + 8 \qquad 6x_y + 7x_2 - 8x_y - 9x + 10x_2 = 17x_2 - 9x - 2x_y$				
Simplify by combining like terms:				

Simplify by combining like terms:

1. 6n + 11n	2. 6x2 - 7x + 9 - 8x2 + 7x - 8	3. 8xy - 2x + 9xy + 3x

4. $25x_2 - 9x + 7y - 13x_2 + 8y$ 5. $8x_2y + 9xy - 2x_2y + 3xy - 9xy_2$

6. 6a4b - 7ab + 3b - 6a4b + 7ab

F. Distributive Property

Simplify using the Distributive Property:

1. -2(3y - 7) 2. 6(1 - 4x)

- 5. -(4x 5y) 6. 2x(-3x 1)
- 7. -x(5x + 2 7y)

G. Evaluating With Integers

EVALUATE (simplify) the expression using your order of operations and integer rules. Show the substitution step and all work. Reduce all fractions. Use the following given values to evaluate the following expressions.

 a = -2 b = 2 c = -3 d = 4 e = -5 f = -1

 1. 5a + b - 2c 5. $\frac{2(b - e)}{c + d}$

2.
$$\frac{2e}{a} - ab + f$$

6. -2f(a + 2c)

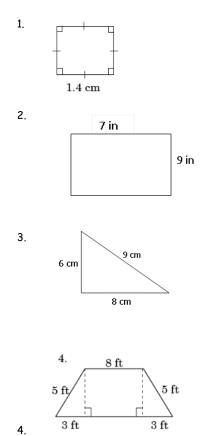
3. $\frac{(3b-c)}{(6c+c)}$ 7. -3d + af - 15

	H. So	olving	Equ	lations
--	-------	--------	-----	---------

Find the numeric value of	the variable by isolating the varia	able.			
✓ Inverse Operations	✓ Inverse Operations cancel each other:				
addition ↔ subtr	raction or multiplication \leftrightarrow division	n or square ↔ square root			
✓ Apply the inverse o	 Apply the inverse operation to both sides of the equation to isolate the variable 				
 ✓ Always balance across the equal sign. 					
Solve for the variable in each problem.					
1. × - 4 = 16	3. a - 4 = 15	5. 7x = 42			

2. 25 + x = 17

4. -8m = 64

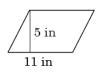

6. 4x + 7 = 31

I. Solving Inequalities

Symbol	Meaning	Equation or Inequality	Graph
=	equals	<i>x</i> = 3	
<	is less than	<i>x</i> < 3	1 2 3 4 5
\leq	is less than or equal to	<i>x</i> ≤ 3	1 2 3 4 5
>	is greater than	x > 3	1 2 3 4 5
≥	is greater than or equal to	<i>x</i> ≥ 3	
E×am 2x:		$\frac{-4y}{-4} < \frac{-4y}{-4} > \frac{-4y}{-4} < -$	
$x \leq$	2 Divide each side by		
-	0 1 2 3 4 5	~ -6	-5 -4 -3 -2 -1
ve and graph t	he following inequalities.		
1. 3f	< 15	<u>+ </u>	-++-+-+-+-++++++++
2. m	+ 6 ≥ 7	···	
37	h < 56	· } · } · + · + · + · · · · · · · · · · 	
4. 2g	- 8 > 20	• • • • • • • • • • • • • • • • • • • 	-+ + + + + + + + + + + + + + + + + + +

J. Perimeter To find the perimeter (distance around) any shape, add all of the sides.

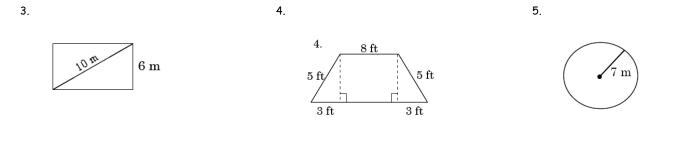
Find the perimeter of the following figures. Round to the nearest hundredth if necessary.



K. Area

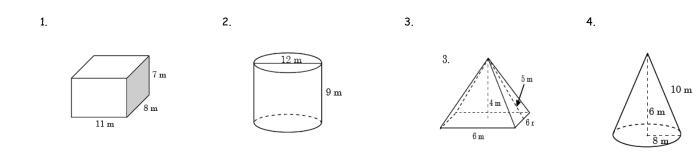
Triangle :	$A\!=\!rac{1}{2}bh$ where b is the length of the base and h is the height of the triangle.
Square:	$A = s^2$
Parallelogram/	(Rectangle: $A\!=\!bh$ where b is the length of the base and h is the height
Trapezoid:	$A=rac{1}{2}hig(b_1+b_2ig)$ where h is the height, and b1 and b2 are the bases
Circle:	$A\!=\!\pi r^2$ where r is the radius of the circle
-	

2.


Find the area of the following figures. Round to the nearest hundredth if necessary.

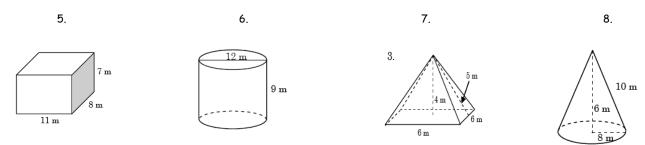
2.

3 ft


9 ft

L. Surface Area

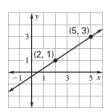
Prism:	Surface $Area = Ph + 2B$; $Volume = Bh$ where P = Perimeter of base, h = height of prism B = Area of base
Cylinder:	Surface $Area = 2\pi rh + 2\pi r^2$; $Volume = \pi r^2 h$ where r = radius of cylinder h = height of cylinder
Pyramid:	Surface $Area = \frac{1}{2}P\ell + B$; $Volume = \frac{1}{3}Bh$ where P = Perimeter of base, ℓ =slant height, h = height of pyramid
	B = Area of base
Cone:	Surface $Area = \pi r\ell + \pi r^2$; $Volume = \frac{1}{3}\pi r^2 h$ where r = radius of cone, h = height of cone, ℓ =slant height


Find the surface area of the following figures. Round to the nearest hundredth if necessary.

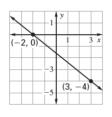
Μ.	Volume
<i>m</i> .	Volume

Prism:V = Bh where P = Perimeter of base, h = height of prism B = Area of baseCylinder: $V = \pi r 2h$ where r = radius of cylinder h = height of cylinderPyramid:V = (1/3)Bh where P = Perimeter of base, ℓ =slant height, h = height of pyramidB = Area of base $V = (1/3)\pi r 2h$ where r = radius of cone, h = height of cone, ℓ =slant height

Find the volume of the following figures. Round to the nearest hundredth if necessary.

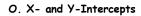


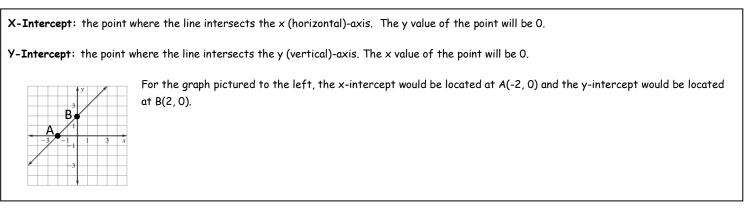
N. Slope

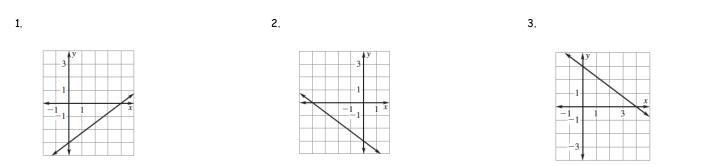

Slope - m, rate of change,
$$\frac{rise}{run}$$
, $m = \frac{y_2 - y_1}{x_2 - x_1}$

Find the slope of the line that passes through the points.

1.



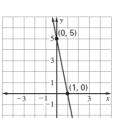

2.


3.

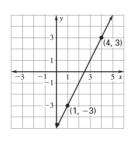
(-3, 3)	A y	(2, 3)	
	1		_
		2	x

Find the x- and y-intercepts for the graphs below.

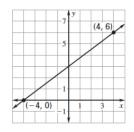
P. Slope-Intercept Form


Slope-Intercept Form: y = mx + b, where m is the slope of the line, and b is the y-intercept.

Write and equation of a line with the given slope and y-intercept.


1. Slope: 7; y-intercept: 4

- 2. Slope: -3, y-intercept: 5
- 3. Slope: 1, y-intercept: -6


4.

5.

6.

Q. Linear vs. Nonlinear Functions

You can determine if a function is linear or nonlinear by looking at the rate of change. +2 +2 +2 3 5 7 9 x As x increases by 2, y increases by 3. The rate of change is constant, so this function is linear. 7 10 13 y 16 +3+3+1+1 +1As x increases by 1, y decreases by a different $\mathbf{2}$ 3 1 4 x amount each time. The rate of change is not -3 -6 -10-15y constant, so this function is nonlinear. з

2.

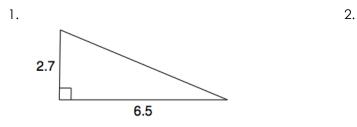
4.

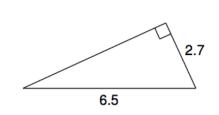
Determine whether each table represents a linear or nonlinear function.

1		
	٠	

х	3	5	7	9
У	7	9	11	13

х	1	5	9	13
у	0	6	8	9

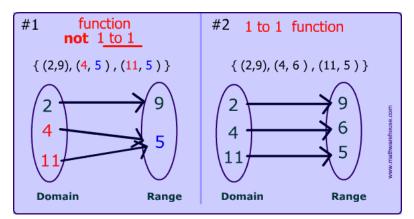

3.


х	3	6	9	12
у	2	3	4	5

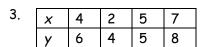
x	-2	-3	-4	-5
У	-1	-5	9	8

R. Pythagorean Theorem

Using Pythagorean Theorem $a_2 + b_2 = c_2$ (where a and b are the legs, and c is the hypotenuse), find the missing lengths.



S. Functions


A function relates each element of a set with exactly one element of another set. Summary \rightarrow For every input, there is one and only one output.

Determine if the following are functions or not.

1. {(0, 0), (1, 1), (1, -1), (2, 2), (2, -2)}

2. {(-2, 2), (-1, 1), (0, 0), (1, 1), (2, 2)}

4.	x	1	2	3	2
	у	4	5	6	7